DOI: https://doi.org/10.32515/2664-262X.2024.10(41).2.39-46

Improvement of a Coarse Filtration System for Working Fluids with a Metal Mesh Filter Element

Oleh Sisa, Volodymyr Mirzak, Oleh Kyslun, Denys Tupalenko

About the Authors

Oleh Sisa, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sisaoleh@gmail.com, ORCID ID: 0000-0002-4783-100X

Volodymyr Mirzak, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: mirzak.moodle@gmail.com, ORCID ID: 0000-0002-4167-7291

Oleh Kyslun, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: kyslun@gmail.com, ORCID ID: 0000-0001-6059-3731

Denys Tupalenko, post-graduate, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Abstract

For normal operation of mechanisms and machines using various working fluids, the size of mechanical particles in it must be smaller than the gap in the moving pairs or the holes in the nozzles. In this regard, the working fluids are pre-filtered. Usually, two-stage filtration is used: first, coarse cleaning, and then fine cleaning. This work is devoted to improving the coarse cleaning system. There are known coarse cleaning filters in which the liquid is cleaned due to sludge. They are large-volume tanks with partitions. This circumstance sharply limits the scope of use of these filters. Mesh filters are of certain practical interest for coarse cleaning of working fluids, as they are more compact and convenient to use. For coarse cleaning of working fluids, only square-weave metal meshes are used, that is, metal meshes with a square mesh. To form a cylindrical working surface of the filter element, the flat metal mesh is not only bent, but also its ends are connected using additional parts or soldering. This increases the cost of manufacturing the filter element. In addition, to increase the productivity of the liquid pumped through the filter, the need to increase the area of the filter element can significantly increase the dimensions of the filter. The latter limits the scope of its use. As we can see, all the imperfections of this coarse filter are associated with the fact that its filter element has only one working surface (cylindrical). Therefore, further improvement of the filter is aimed at developing a filter element with an additional working surface. The purpose of the study is to reduce the cost of manufacturing and expand the scope of use of the filter. In the proposed new coarse liquid filter, the filter element is made of a flat metal mesh with a square mesh by the method of cold multi-operation drawing. Of all known metal meshes, only meshes with a square mesh are subject to this type of deformation, i.e. do not tear. After stretching, the filter element takes the form of a cylindrical cup with a small flange, which is used for fastening. An original technology for stretching a filter element from a square blank is proposed. This filter element, compared to the known one, has not only a side, but also a bottom working surface. The filter element is tightly put on a perforated support, which does not allow the mesh to bend under the pressure of the liquid being cleaned. The use of this filter allows you to reduce the cost of its manufacture by simplifying the technology for manufacturing the filter element, as well as expand the area of use of the filter due to the presence of not only a side, but also a bottom working surface in the filter element. The latter increases its throughput and makes it more compact.

Keywords

coarse filter, filter element, metal mesh with square weave, working surface, drawing

Full Text:

PDF

References

1. Myroniuk, O., Shevchuk, V., & Paslavskyi, R. (2021). Research on a two-stage fine filter for diesel fuel. Visnyk Lvivskoho natsionalnoho ekolohichnoho universytetu. Ser. Ahroinzhenerni doslidzhennia. 25. 49–56 [in Ukrainian]. https://doi.org/10.31734/agroengineering2021.25.049

2. Paryanto, I.; Budianta, I.A.; Alifia, K.C.H.; Hidayatullah, I.M.; Darmawan, M.A.; Judistira; Prakoso, T.; Indarto, A.; & Gozan, M. (2022). Modelling of Fuel Filter Clogging of B20 Fuel Based on the Precipitate Measurement and Filter Blocking Test. ChemEngineering, 6, 84. https://doi.org/10.3390/chemengineering6060084

3. Stone, W., Bessee, G., & Stanfel, C., (2009). “Diesel Fuel/Water Separation Test Methods—Where We Are and Where We Are Going," SAE Int. J. Fuels Lubr. 2(1):317-323. https://doi.org/10.4271/2009-01-0875.

4. Ryazantsev, R.Yu. (2022). Hydraulics, hydro and pneumatic drives. Bar : Bar Vocational College of Transport and Construction NTU [in Ukrainian].

5. Water treatment plants. Tsyfrovoi repozytoryi KhNUHKh ym. A. N. Beketova : Retrieved from https://eprints.kname.edu.ua/42467/1/2014%2040%D0%9B%20%D1%80%D0%B5%D0%BF%-D0%BE%D0%B7%20%D0%92%D0%92%20_%D0%A0%D0%92%D0%92%D0%A0_.pdf

6. Chabannyi, V.Ia. (Ed.). (2008). Fuels and lubricants, technical fluids and their supply systems. Kirovohrad: Tsentralno-Ukrainske vydavnytstvo [in Ukrainian].

7. Bokov, V.M. (2022). Physical processes of special technologies. Experimental research. Kropyvnytskyi: PP «Ekskliuzyv-System» [in Ukrainian].

8. Bokov, V.M. Tekhnolohiia rozmirnoi obrobky duhoiu. Istorychnyi narys, verstaty. Kropyvnytskyi: PP «Ekskliuzyv-System» [in Ukrainian].

9. Grids: classification, technical characteristics and methods of application. Prometr. Retrieved from https://prometr.com.ua/stroitelstvo/s-tki-klasif-kac-ya-tehn-chn-harakteristiki-ta-sposobizastosuvannya/

10. Bokov, V.M. (2021). Cold stamping technology. Kropyvnytskyi: PP «Ekskliuzyv-System» [in Ukrainian].

Citations

1. Миронюк О., Шевчук В., Паславський Р. Дослідження двоступінчатого фільтра тонкої очистки дизельного пального. Вісник Львівського національного екологічного університету. Сер. Агроінженерні дослідження. 2021. Вип. 25. С.49–56. URL: https://doi.org/10.31734/agroengineering2021.25.049

2. Paryanto, I.; Budianta, I.A.; Alifia, K.C.H.; Hidayatullah, I.M.; Darmawan, M.A.; Judistira; Prakoso, T.; Indarto, A.; Gozan, M. Modelling of Fuel Filter Clogging of B20 Fuel Based on the Precipitate Measurement and Filter Blocking Test. ChemEngineering 2022, 6, 84. URL: https://doi.org/10.3390/chemengineering6060084

3. Stone, W., Bessee, G., and Stanfel, C., "Diesel Fuel/Water Separation Test Methods—Where We Are and Where We Are Going," SAE Int. J. Fuels Lubr. 2(1):317-323, 2009, https://doi.org/10.4271/2009-01-0875.

4. Рязанцев Р. Ю. Гідравліка, гідро – та пневмоприводи: Навч. посіб.. Бар : Барський фаховий коледж транспорту та будівництва НТУ, 2022, 140 с.

5. Очисні споруди водопостачання. Цифровой репозиторий ХНУГХ им. А.Н. Бекетова : веб-сайт. URL: https://eprints.kname.edu.ua/42467/1/2014%2040%D0%9B%20%D1%80%D0%B5%D0%BF%-D0%BE%D0%B7%20%D0%92%D0%92%20_%D0%A0%D0%92%D0%92%D0%A0_.pdf (дата звернення: 12.10.2024).

6. Паливо-мастильні матеріали, технічні рідини та системи їх забезпечення / за ред.

В. Я.Чабанного. Кіровоград : Центрально-Українське видавництво, 2008. 500 с.

7. Боков В. М. Фізичні процеси спецтехнологій. Експериментальні дослідження. Збірник статей: навчальний посібник . Кропивницький : ПП «Ексклюзив-Систем», 2022, 625 с.

8. Боков В. М. Технологія розмірної обробки дугою. Історичний нарис, верстати: навчальний посібник . Кропівницький : ПП «Ексклюзив-Систем», 2020, 316 с.

9. Сітки: класифікація, технічні характеристики та способи застосування. Prometr : веб-сайт. URL: https://prometr.com.ua/stroitelstvo/s-tki-klasif-kac-ya-tehn-chn-harakteristiki-ta-sposobi-zastosuvannya/ (дата звернення: 16.10.2024).

10. Боков В. М. Технологія холодного штампування: підручник . Кропивницький: ПП «Ексклюзив-Систем», 2021, 213 с.

Copyright (c) 2024 Oleh Sisa, Volodymyr Mirzak, Oleh Kyslun, Denys Tupalenko